
Path Planning Method for Navigation
and Exploration with Drones Using

the 3D-RRT Algorithm

Camilo Espinosa-Martinez1, Lina Maria Aguilar-Lobo1, Oscar J. Suarez2,
Ulises Davalos-Guzman1, Gilberto Ochoa-Ruiz3, Fabian Castaño4,

Alberto Ochoa-Zezzatti5

1 Universidad Autónoma de Guadalajara,
Mexico

2 Universidad de Pamplona,
Colombia

3 Tecnologico de Monterrey,
Mexico

4 Pontificia Universidad Javeriana,
Colombia

5 Universidad Autónoma de Ciudad Juárez,
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Abstract. In the past few years, drone development has opened doors to new
application areas giving us the chance to carry sensors onto more complex
environments, such as cities and forests, in which there are proximity conditions
of considerable size that could be categorized as highly dangerous. In this context,
the path planning method is commonly used in robotics applications to find a
valid sequence to move the drone to a target point. This method aims to find the
shortest path length and obtain a safe trajectory avoiding collisions with obstacles.
To achieve this objective, we present a novel path planning method for navigation
and exploration with drones based on a 3D version of the RRT algorithm. The
proposed algorithm developed in Python have two principal contributions, first
are used a box model to encapsulate obstacles to avoid collisions and a dynamic
range bias for the sampling, and, a giving orientation technique is employed
on the exploration steps to reduce the number of computational operations
and processing time when is obtained a valid path. Simulations results are
performed to validate the algorithm using different scenarios and 3D obstacles
randomly located. The results illustrated that the 3D-RRT algorithm finds a
valid path avoiding obstacles with benefits on computational cost and better
processing time.
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1 Introduction

Path planning algorithm is a computational method consisting of generating a valid
output path free of obstacles from a start point to a target point. Several path planning
algorithms have been proposed in the literature [1-4], and in [5, 6] these algorithms
were classified into three main categories:

– Classical Methods: They can find a solution or ensure a missing solution. However,
these methods typically entail very costly and complex computational workloads.
Therefore, they are not practical solutions for real environments [7].

– Sampling-Based Methods: They run sampling of configurations in space to model
obstacles and possible paths. Different techniques have been implemented in past
years, and the most relevant is Rapidly-Exploring Random Trees (RRT)[7].

– Optimization Methods: They try to solve the problem as a numeric optimization
problem, this kind of algorithm start with a set of trajectories (it can be free of
obstacles or not), then try to use optimization to find a solution for a valid path
free of obstacles and optimal cost function, i.e., length, steps, time, among others.
However, some of those cost functions usually have many local minimum [7].

Sampling-based methods are widely used because of their effectiveness and
low computational cost on high dimensional spaces [8-11]. These methods use a
representative configuration space and build a collision-free road map connecting points
sampled from the obstacle-free space. One of the most well-known sample-based
methods is the RRT algorithm proposed by [10].

Most RRT algorithm implementations have focused on path planning for holonomic
systems in the 2D world, where successful solutions end in commercial products such
as automatic vacuum, robots, and sweepers robots [12-15]. However, 3D point array
processing is an essential task working in the 3D world to computer obtain a better
description. Moving in a 3D space includes a challenge to move through space with
obstacles at different heights, and the vehicle could set a path starting at low levels to
go up and continue trajectories to reach the target suddenly. The novelty of the present
paper is summarized as follows:

1. A path planning method for navigation and exploration with drones based on a
3D version of the RRT algorithm, which uses box encapsulation as a modeling tool
to define obstacles in the 3D space. The advantage of this encapsulation is saving
computing power and simplifying obstacle management to select the best trajectory
avoiding obstacles from the start point to the target point in a 3D surface.

2. The implementation and validation of the proposed algorithm are performed
using Phyton.

The rest of the document is organized as follows: In section 2, related works of path
planing methods are presented. In Section 3 the classical RRT algorithm is provided.

Section 4 presents our model of the 3D-RRT algorithm, which is the main
contribution of this paper. Simulation results are reported in Section 5, illustrating
different scenarios. On the other hand, the discussion is presented in Section 6. Finally,
conclusions and future works are drawn in Section 7.
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Fig. 1. RRT explore space to find a trajectory P from qstart to qtarget composed by segments qi,
using random points and length ϵ.

2 Related Works

Recently, in the literature, several works related to methods for the path planing problem
has been reported. In [18] is presented a path planing system for ground robots in
3D environments using point clouds as input using a 3D range sensors, presenting
advantages in efficiency computation time and obtained a safety and effective path.
The main reference here is use of special geometries to speed up the computational
operations and reduce the subset of sampling space used by RRT algorithms.

In reference [19] is presented an improves RRT-connect algorithm for path planning
for urban low altitude UAV with an improves RRT-connect algorithm, using a
optimization to search step length, parent node selection and branch orientation to
reduce the path length and algorithm time. However this technique is reduced to qualify
new branches compared to an angle ideal for UAV. Our proposal is covering a wide
range of solution, using searching direction focused around a vector in direction of
target, not new point, this speed up the global search, not only new branches.

The work presented in [20] proposes a hybrid algorithm for path planing in complex
offshore areas, using an improve of the particle swarm optimization (PSO) for global
path planing and Artificial Potential Field (APF) to solve the local minimum problem.
In [21] is presented three novel versions of the RRT algorithm with metaheuristics
algorithms to solve 3D path planning problem in autonomous UAVs, where are
employed the advantages of the two methods. These new hybrid models try to find
solutions close to the optima, avoiding obstacles with a efficient execution time and
space. However, the metaheuristic-based algorithms are disadvantaged as they demand
a predetermined knowledge of intermediate stations.

Another work [22] proposes an improved version of B-RRT, named BPIB-RRT*,
that employed a greedy connect a heuristic for the connection of two-directional trees.
However, it is still not very successful in exploration. On the other hand, although it
is recommended as a 3D path planning method, it is possible to use it mainly in 2D
environments. This restriction is mainly valid to all B-RRT versions, and the results
shown an execution time higher that our model.

143

Path Planning Method for Navigation and Exploration with Drones using the 3D-RRT Algorithm

Research in Computing Science 151(10), 2022ISSN 1870-4069



Algorithm 1: RRT
1 Input: Initial Configuration with qstart and qtarget located in space C ;

Result: Path valid from qstart point to qtarget point
2 τ ← INITTREE ( qstart)
3 while ¬ STOPCRITERIA do
4 qrand ← RANDCONF()
5 qnew ← EXTEND (τ , qrand )
6 if qnew = qtarget then
7 return Path
8 else
9 return EMPTY

10 end
11 end

There are other approaches in the state of art that include dynamic considerations
using point-mass model for cluttered environments in specific [23] propose a solution of
3 level to plan and find a feasible trajectory, in the third level use a modified RRT (SST)
in a reduced sampling space, the current RRT 3D proposal could give and improvement
in computational time for the third level even reducing more the searching volume.

3 RRT algorithm

Taken from [7], the path planing method considers a configuration C in Rd space where
C ⊆ Rd, then C contains all possible configurations in the space and Cfree contains the
set of configurations free of obstacles.

In this context, the state q ∈ Rd is the point in the configuration space that indicates
the position and direction in the space C. Considering a trajectory P as a series of N
configurations joining points qi linked by N − 1 segments, where each segment is a
direct line segment from qi to qi + 1 represented by (qi , qi+1), this trajectory P is
presented in equation (1) as follows:

P = ∪N−1
i=1 (qi, qi+1). (1)

Based on equation (1), two points are selected (start point (qstart) and a target point
(qtarget)). The purpose of RRT algorithm is to find a valid trajectory P (showed as black
line in Figure 1), where all segments qi ∈ Cfree.

To achieve this purpose, RRT algorithm will build a tree with line segments found
exploring the space of configurations C using qrand points ∈ C as can be seen
in Figure 1.

Algorithm 1 shows the classical RRT proposed in [10]. This algorithm builds a
tree of line segments that explores multiple regions of space C using randomly based
functions to generate qi configurations until they meet qtarget with a good trajectory free
of obstacles. The RRT algorithm receives the space C which contains qstart and qtarget
and returns a valid path P .

The algorithm initializes the search tree with root in qstart (line 1). Then a loop is
used to explore over the space, searching the path free of obstacles. Line 2 shows the
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Algorithm 2: EXTEND - RRT
1 INPUT: τ , qrand

Result: qnew

2 qnear ← NEAREST( τ , qrand );

3 qnew ← qnear + (qnear +
| qrandi − qneari |

ϵ
)

4 if VALIDSEGMENT(qnear, qnew) then
5 ADDSEGMENT
6 return qnew

7 else
8 return EMPTY
9 end

use of STOPCRITERIA function to stop the loop in one of two possible scenarios;
the first one qtarget has been met from qstart, and the second one is a maximum number
of iterations in order to prevent infinite loop. Line 3 select a qrand from valid space C, as
possible next step in the trajectory. This value is used as a parameter for the EXTEND
function. As result a qnew is added to tree τ (line 4).

If qnew is equal to qtarget, the complete path has been founded (line 6 and line
7); otherwise, the process continues running until STOPCRITERIA function stops
the algorithm. The second scenario in STOPCRITERIA function uses a maximum
number of iterations as a parameter; it is usually set to a specific number of iterations
(100, 300, 500, 1000, and others) if the algorithm does not find a valid trajectory under
this maximum number of iteration returns an empty tree.

The EXTEND function details (line 4 in Algorithm 1) are show in Algorithm 2,
where it finds the nearest point qi to qrand in τ (line 1), then a line segment from qnear to
qrand is calculated using a factor ϵ in direction of qtarget (line 2) see Figure 1.

In Algorithm 2, VALIDSEGMENT function determines whether the line segment
is hitting an obstacle in the possible trajectory (line 3). If the function finds an obstacle,
an empty segment is returned; otherwise, the segment is added to τTREE. Some
implementations of the RRT algorithm use a cost function to evaluate the quality of
the segments, such as the length and energy consumption on a robot’s trajectory; those
functions can be used by VALIDSEGMENT function to determine possible segments
free of obstacles meet cost function criteria to be added to τTREE.

4 Proposed 3D-RRT Algorithm

The RRT algorithms proposed by [10,17] use a randomized data structure for path
planning and the main goal is to find a continuous path from initial point (qstart) to
target point (qtarget), where qstart and qtarget ∈ C that is the valid configurations space. All
the paths found by the traditional RRT algorithm follow the equation (1), and obstacles
are modeled as polygonal structures in the 2D space, then C is presented as a possible
set of rectangle paths.

The path planning in 3D scenarios need to solve the problem of find a path from
start point to target point using the 3D space, not only a 2D solution implemented in a
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Fig. 2. Box model for obstacles.

specific Z coordinate (that allows robot’s movement over the obstacles). That means to
produce a real 3D solution path in the space C. In implementations for real world, the
systems should be efficient in time, number of steps and iterations.

For example, a robot using 3D planning algorithm should consider the number of
iterations and time to find a path as factors that consume computational power and
energy. Moreover, in implementations of navigation with drones, the battery became
a crucial resource, therefore, an algorithm that help to generate energy saving will be
preferred over other implementations.

This paper proposes a novel path planning method for the navigation and exploration
with drones based on the 3D version of the RRT algorithm using box models to
encapsulate obstacles and the cost function of 3D vectorial distance as vector distance.

Our model is a solution that have the two factors became essential in the path
planning method that are, the time and the iterations numbers to find a path free
obstacles. Using box models to encapsulate obstacles, the cost function of 3D vectorial
distance as vector distance and focus box of possible random points following vector
distance to reduce time on the calculus of τTREE.

Our algorithm uses the information of the 3D space from qstart point to qtarget point
with various obstacles modeled as a series of rectangular boxes that can be used
to set safe trajectories avoiding collisions even with not regular geometry or cubic
style obstacles.

The box encapsulation allows different model obstacles from the real world with
boxes to simplify finding a valid path in complex scenarios with multiple obstacles
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(a) (b)

Fig. 3. Dynamic Range Proposed. (a) The Dynamic Range used in [17] uses ranges defined by
spheres of radius R. (b) The Dynamic Range proposed in our 3D-RRT uses a box with length ϵ,
focused in the direction of the target.

geometry. An example of the box encapsulation model in an urban environment is
presented in Figure 2, where it can see that one box could contain a single house, a
building, or a group of buildings.

Two features of the RRT algorithm proposed in [7] are considered in our proposal
method, which is presented in Figure 4. The first refers to the minimal bias for random
function using vector distance in the target direction to generate dynamic ranges that
speed up the calculations and converge closer to the target point. The second one
refers to an increment of minimal ϵ segments used in the proposed algorithm [7]
with vectorial distance as cost function during calculations, allowing exploring the 3D
space randomly.

Previous implementations of the RRT algorithms for robot and drone navigation in
3D spaces usually generate the path in the 2D plane then join it to the Z-axis, adding
a vertical value. Although this approach can generate a valid route, it does not take
advantage of most points through the 3D space available for other routes in multiple
configurations approaches.

In this context, our proposal method presents a new form of calculating a valid
path in a 3D space. Specifically, the main contributions of this paper are presented
in lines 3 (RANDCONF function) and 4 (EXTEND function) of the RRT Algorithm
1 presented in [10]. The detail of EXTEND function used in our 3D-RRT proposed in
the tree generation is presented in Figure 3.

The new 3D-RRT algorithm proposed are illustrated in the block diagram of Figure
4. Is important to say, that in RANDCONF were introduced the proposed modifications
for the new 3D-RRT algorithm (green boxes in Fig4). The RANDCONF function
generates coordinate values in each dimension in the 3D space. This function uses a
range [m, n] to generate a pseudo-random value.

The proposed change considers the target’s direction, using a vector pointing from
the start point to the target point. The range is calculated for each dimension in space C
on the target’s bias, generating a cubic volume of random points in C. The start point,
used to calculate the direction, is updated to the previous nearest value in each iteration;
this keeps the quality of segment added.

Previous approaches used the dynamic domain for RRT [17], considering the volume
of Voronoi regions with spheres of the previously defined radius. The proposed novelty
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Fig. 4. Proposed 3D-RRT algorithm.

in our model speeds up the algorithm, reduces convergence over Voronoi volumes
selected and proximal to the target point, reduces the number of computing operations
to build trees; as a result, a worthy improvement on reducing wasting calculations over
space in distant regions focus calculations.

The modified algorithm still converges as original RRT [9] without loose effective
calculations. This new feature helps on drones implementations where the battery is
an essential resource in 3D implementation, and at the same time is impacting in a
reduction in the total number of computing operations, in consequence, the algorithm
3D-RRT contributes in the energy consumption saving energy from the battery.

On the other hand, the VALIDSEGMENT function implemented is used to
determine if the segment is in collision with an obstacle. The path found qstart - qtarget
avoid obstacles using an encapsulation approach implementing boxes as a modular
shape to run calculations.

The drone is encapsulated by a box that preserves the integrity and reduces
complexity on calculations, as shown in Figure 2. A system of boxes also models
obstacles, then the collision is determined by the calculation of box collision.
Figure 2 shows an approximation of the box model and the drone encapsulated; in
implementations of the proposed technique, a drone can use sensors to measure the
height of the box, consequently the height of the obstacle.

For path planning in drones, it is necessary to use a couple of sensors above and
under the chassis to detect the obstacle edges and then the box dimensions, observing
that the flying or the grounded obstacles can be avoided using this approach.

The approach introduced in this paper uses a box model in the direction or target and
dynamic range over this volume to run random exploration in space C. The NEAREST
function will set the dimension of the box depending on qnear and qtarget. This function
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Fig. 5. Proposed 3D-RRT algorithm using boxes as modular shape.

will help to the algorithm search on the more likely and closer configuration. It is
important to note that the dynamic box range occurs on each iteration on nearest qi,
so the algorithm keeps covering all space C, focusing on the target’s direction.

Line 2 in Algorithm 2, shows detail of incremental ϵ from qnear calculated with
vectorial distance to qrand. In our model, the distance calculation and the random points
are calculated using 3D coordinates in RANDCONF function, and qrandi points denote
a component of each axis in C (where i ∈ C) were generated with dynamic box range
technique as is showed in Fig 3. Thus, qi points added to τTREE are closer to the
distance vector, which represents an advantage in narrow spaces between obstacles.

Using focused boxes to calculate new points in Tree and boxes to encapsulate
obstacles help to processing the environment to generate a valid path, at first glance
Figure 5 shows that dynamics boxes fits better the environments modeled with boxes,
similar to maze of boxes, results found out a reductions in time to find a path and number
of iteration needed; this approach could be used in real time systems where number of
iterations and processing time are critical.

5 Simulation Results

In order to validate the proposed 3D-RRT algorithm, simulations with different
scenarios, different numbers of obstacles, and forms of 3D obstacles, which were
randomly located, have been tested using Python.

The validation results for different scenarios and forms of 3D obstacles are presented
in Figure 8. These figures show the comparison between the results of the RRT
algorithm proposed by [10] (Figs. 5, 5 and 5) and our version 3D-RRT algorithm (Figs.
5, 5 and 5). The starting point (qstart) is shown in blue and the target point (qtarget) is
shown in yellow.

Note that the RRT algorithm proposed by [10] executes searching of new points to
build paths in farther areas, even in regions previously explored, while the results of our
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(a)

(b)

Fig. 6. Comparative between the results of the RRT algorithm of [10] and our proposed 3D-RRT
algorithm for the case 1. Figs 5, 5 and 5 presented the results of RRT algorithm of [10], and Figs
5, 5 and 5 presents the results of our proposed 3D-RRT algorithm.

(a)

(b)

Fig. 7. Comparative between the results of the RRT algorithm of [10] and our proposed 3D-RRT
algorithm for the case 2. Figs 5, 5 and 5 presented the results of RRT algorithm of [10], and Figs
5, 5 and 5 presents the results of our proposed 3D-RRT algorithm.

3D-RRT algorithm show the giving orientation on the exploring steps with the fixed
boxes, it reduces the number of computational operations and processing time to obtain
a valid path free of obstacles.
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(a)

(b)

Fig. 8. Comparative between the results of the RRT algorithm of [10] and our proposed 3D-RRT
algorithm for the case 3. Figs 5, 5 and 5 presented the results of RRT algorithm of [10], and Figs
5, 5 and 5 presents the results of our proposed 3D-RRT algorithm.

Table 1. Comparison of the performance between the RRT algorithm in [10] and our 3D-RRT
proposal algorithm.

Test Cases Time (seconds) Iterations (number)
Case obstacles RRT 3D-RRT RRT 3D-RRT

1 7 204.3432 9.7121 7292 4413
2 9 45.2837 0.6609 3593 384
3 9 97.2242 1.0178 5466 556
4 6 86.2973 0.517 4557 276
5 6 160.2973 2.2086 6548 1084

Several simulation cases were executed to test our algorithm and the results are
summarized in Table 1 where five cases are presented. It is important refer that although
in some cases there is the same number of obstacles, the location of them is different.

This feature produces a different result in terms of performance of the algorithm,
because in closes spaces is necessary more computational processing to obtain a valid
path. However, we can see that in all test cases, our algorithm has a better performance
in terms of execution time and number of iterations that the basic RRT algorithm.

6 Discussion

Based on the simulation results is possible to see that trees growth shows a strong bias in
the target point’s direction. No branches are exploring lateral edges over limits of space
simulated or other areas with few probabilities to add a valid path; this approach avoids
executing computational operations in regions most likely too far from the target.

The 3D exploration occurs between and over obstacles; it is not restricted to
a 2D plane to increase probabilities to find valid paths. Simulations use different
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configurations of obstacles to show the response of the 3D algorithm to variations in
space C.

The validation results of our method show that the 3D-RRT proposed model has
better performance due to the reduction of the time execution and the reduction of
the total number of computational operations. Although there are few works on other
versions of the 3D-RRT algorithm, all of them explore areas with classic perspective,
as mentioned before.

This could include wasting exploration time on farther areas. In our model, a
valid path free of obstacles is found, and the use of the box encapsulation technique
saves time and computational operations compared with the classic models. The
proposed changes saves time and computational operations that produce energy saving
in implementation in real world examples like use of drones with 3D-RRT algorithm.

7 Conclusions and Future Works

This paper proposes a novel path planning method using the RRT algorithm for 3D
surfaces in Python. The validation results for different randomly located obstacles
show that it successfully finds a good valid trajectory, avoiding collisions, and a higher
reduction in the execution time and in the number of iterations or computational
operations. The 3D exploration gives benefits on computational cost and improvement
in narrowed spaces.

Furthermore, an encapsulation approach implements a box model for both obstacles,
and the drone is used. The dynamic box encapsulation model generates a bias volume
through the space with the most valuable points, as presented, using length as a function
of cost. The box could be spread across different Voronoi regions without losing a
random exploration feature, which is ideal for spaces like streets and forests.

Future Works could cover the implementations in not urban scenarios like forest,
where terrain and obstacles became more irregular, in other hand use of algorithm
proposed in laboratory scenarios could help to implement different sensors and
strategies to obstacles sampling. The proposed algorithm use fixed obstacles, this mean
size and number of obstacles don’t change during path calculation, this became an
limitation to consider in real implementations. This could be address with a sampling
method that generate a fresh environment samples for real implementations but that
analysis is out of scope for current proposal.
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